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Lower and upper bounds to the decay of the ground state 
one-electron density of helium-like systems 

Thomas Hoffmann-Ostenhof 
Institut fur Theoretische Chemie und Strahlenchemie der Universitat Wien, Wahringer- 
strasse 17, A 1090 Vienna, Austria 

Received 20 September 1978, in final form 18 December 1978 

Abstract. The asymptotic behaviour of the ground state one-electron density p ( x )  of 
two-electron atoms is investigated. Lower and upper bounds to p ( x  I showing ‘almost’ the 
same decay are derived. 

1. Introduction 

We consider a two-electron atomic system described by the Hamiltonian 

A1 A2 2 Z 3 + 1x1 - X J 1 ,  x ,  E R  , /x i l  = ri, i = 1, 2 ,  H =  _ - _ _ _ _ _ _  
2 2 r l  rz 

where 2 denotes the nuclear charge. The ground state electron density p ( x )  is defined 

(1.2) 

where rl, is normalised to 1 and satisfies the Schrodinger equation Htl, = E$, where E is 
the ground state energy. Note that p(x) = ~ ( 1 x 1 ) .  

Asymptotic properties of subcontinuum wavefunctions of quantum mechanical 
systems have been recently investigated rather intensively. (See Hoffmann-Ostenhof et 
a1 (1978) and Deift et a1 (1978) for recent results and references to other work.) For 
many-particle systems, however, only upper bounds are available, except for the results 
of Mercuriev (1974) on three-particle systems with short-range potentials. For the 
one-particle case Simon (1975) and Bardos and Merigot (1977) obtained lower bounds. 

For atomic one-electron densities Hoff mann-Ostenhof and Hoffmann-Ostenhof 
(1977) derived an upper bound 

by 

p ( x d  = 1 I$(x l ,  XZ)/’ dxz, 

for sufficiently large r, where e denotes the ionisation energy. (For a definition of E see 
for instance Hoffmann-Ostenhof and Hoffmann-Ostenhof (1977).) It was then con- 
jectured that the nuclear charge Z in (1.3) could be replaced by Z - ( n  - l ) ,  where n 
denotes the number of electrons, such that 

k ’ < m  (1 -4) JpO ~ k ,  r ( Z  - n  C 1 IlJZ-1 - J Z r  e ,  
to account for electron shielding. 
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We shall prove (1.4) in Q 3 for two-electron atoms. In P 2 we shall give a lower 
bound to p ( x )  which decays only slightly faster than the right-hand side of (1 .4 ) .  

Our subsequent considerations will be based on a comparison theorem for differen- 
tial inequalities which had been used for the investigation of the decay of many-particle 
subcontinuum wavefunctions by Deift et a1 (1978) and Hoffmann-Ostenhof er a1 
(1978). We cite its shortest version due to Deift et a1 (1978). 

Theorem 1.1. Let f ,  g be continuous functions and let V 2  W 2 0  on R"\S for some 
closed set S. Suppose that on R"\S, in the distributional sense Algl2 Vlgl and 
Alfl S Wif/  and that Igl S I f 1  on aS and f ,  g + 0 as 1x1 + 03. Then / g /  s Ifi on R"\S. 

- 

2. Lower bounds 

Let c $ ~ ( x )  be the normalised and radially symmetric ground state of a hydrogenic 
system confined in a ball with radius R ; that means, we impose the boundary condition 
4 R  ( R )  = 0 on the corresponding Schrodinger equation which reads 

where ER is the ground state energy depending on R. The variational principle implies 

Since 4 R ( ~ Z )  and + ( x l ,  x 2 )  are ground states without symmetry restrictions, they are 
both strictly positive for finite r l ,  r2  (see e.g. Reed and Simon 1978), and consequently 
uR > 0 for finite r l .  Note also that uR is radially symmetric. We are now goin to derive 
a non-negative lower bound to uR(r )  which is in turn a lower bound to sg p ( r ) ,  since 

U R ( T )  m (2 .4)  

due to the Cauchy-Schwarz inequality. 

Lemma 2.1. 

f o r r 3 a R  andcu>l .  

Proof. Starting from 
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Since ~ R I , ! J  > 0, we get 

{ ~ R $ \ X - X ~ ( - ~  ~ X ~ ~ U R ( T ~ - R ) - ' ~ U R T ; ~ [ ~ + R ( C Y  -1) r l  ] 

for rl >aR, a > 1. The surface term in (2.7) is obviously negative, since 

- 1  - 1  

and 

(2.10) 

Combining (2.8), (2.9) and (2.10) with (2.7) we obtain inequality (2.5). 

Now we use lemma 2.1 and theorem 1.1 to derive the following lower bound to 6. 
Theorem 2.1. There exists for every S > 0 a K6 > 0 such that for sufficiently large ro 

(2.11) KSriZ-1)/JZZ%-1 --JZZZ e 

for r 2 ro; E denotes the ionisation energy -Z2/2 - E. 

Proof. Since ER decreases monotonically to E, = -Z2/2,  we can find for every 6 > 0 an 
R6 such that for all R 3 Rs, ER - E  < E + S ,  which implies via lemma 2.1 

A 2 - 1  ( -2-- + E  + 8 + R ( a  - l)- lr-')  U R ( X )  3 0  for r 3 aR, (2.12) 
r 

where R 3 Rg, a > 1. 
Suppose we find a function u ( r )  satisfying 

A 2 - 1  + E + S + R ( a  - l)-'rZ) u ( x )  s 0 for r 3 ro (2.13) 
r 

with ro sufficiently large so that 

ro 3 aR 

and 

(2.14) 

z -1 
r + E  + S  + ~ ( a  - 1 ) - l r p 2  30 for r 3 r o .  (2.15) -- 

(2.16) 



1184 T Hoffmann-Ostenhof 

holds, then we can conclude by theorem 1.1 that 

(2.18) 

where bs and Cs are constants, a straightforward computation of the left-hand side of 
(2.13) shows that the expression obtained is non-positive for suitably chosen bs > 0 and 
for ro sufficiently large. (Obviously ro > bs is necessary for U (x) to be positive.) Since U R  

is positive for finite r, v.~e can choose a C6 > 0 so that the boundary condition (2.16) is 
fulfilled. Hence we have proven inequality (2.17), and therefrom (2.11) follows 
immediately. 

3. Upper bounds 

Let h(xl)  denote the operator depending parametrically on xl ,  

which is self-adjoint on the domain D(-A2). Let F (x l )  be the bottom of the spectrum of 
h (xl). Then the variational principle implies 

I $ ( X l ,  X2)h(Xl)$(Xl, x2) dxz SF(Xl)P(Xl). (3.2) 

We shall prove the following differential inequality which holds in the distributional 
sense. 

Lemma 3.1. 

A Z  ( - 2- ;+ F ( x )  - E ) J p c .  0 

Proof. Since 

O =  I $(H-E)$dx2= IC: 4 ----+h(xl)-E)$dx2, 

(3.2) together with 

(3.3) 

(3.4) 

(3.5) 

(see Hoffmann-Ostenhof and Hoffmann-Ostenhof 1977) immediately leads to (3.3). 

In order to apply theorem 1.1 we need an explicit expression for F(x) ,  namely a 
lower bound. Let 



Decay of helium-like systems 

then we obtain, applying Cauchy-Schwarz's inequality, 

lIxI/= 1 

m ( x d  = ( ~ 4 2 1 x ~ - x ~ l  dxz)-'. 

For ro sufficiently large so that 

m (xl) s 3Z2 /8  for r 2 ro, 

(3.7) becomes 

~ ( x ~ )  3 - z 2 / 2  + m ( x l ) ,  

observing that 4(x2) is the ground state of 

+ m (x& (xz))(4(xz)I 
A2 z 
2 r2 

---- 

provided (3.8) holds. A computation shows that 

m ( x )  = r - ' [ 1  + Z - 2 r - ' - ( z - 1 r - 1 / 2 + ~ - Z r - 2 )  e-zq-l 3 r - I  (1-2-2 r - 2  1. 

Combination of (3.9) and (3.11) with (3.3) leads to 

- P J p + ( r - 2 - l -  2 r zZr-') 4s 0, r 2 ro 

with ro chosen according to (3.8). If we find a function u(r )  satisfying 

)U20 for r 2 r o  --U+ z-l z - Z r - 3  

A (  2 r 

with ro sufficiently large so that (3.8) and 

z-l  z - Z r - 3  
E - - -  2 0  

r 

hold, and where 

U (ro) 3 m, 
then theorem 1.1 implies u(r )  2Jp(r) for all x with r 3 r o .  

By a straightforward but lengthy computation it can be shown that 
- 

= C(1 - s / r ) r ( z - 1 ) / J 2 e - 1  -J% e 

satisfies (3.13) provided 

s > ( Z  - 1) / (8~ ) [ (Z  - 1)/&- 13 

and 

rOamax[s,  as - s ) / ( J 2 E - a 2 / 2 + a / 2 ) 1 ,  a = (2 - 1)/J2E. 

If in addition 
- 

C ~ J P O ( I  -s /rO)- 'r ia+l  eVzero, 

1185 

(3.7) 

(3.8) 

(2.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

then U satisfies (3.15) and we obtain via theorem 1.1 the following upper bound to 4. 
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Theorem 3.1. Let ro satisfy the conditions (3.8), (3.14) and (3.18) and let s and C be 
defined according to (3.17) and (3.19); then 

(3.20) 

Remark. Since can be estimated in terms of the upper bounds given by 
Hoffmann-Ostenhof and Hoffmann-Ostenhof (1978), (3.20) represents an explicit 
estimate for 6. 

4. Discussion 

Let us first comment on the lower bound given in theorem 2.1. Clearly only the S in 
(2.11) prevents us from obtaining the exact asymptotic behaviour. The most natural 
thing to do to eliminate the S would be to consider the differential equation 

However, we could not find a useful upper bound to the electronic repulsion term, and 
the 6 is the price we have to pay for our decoupling of the inter-electronic repulsion. 

Obviously theorem 2.1 can be extended to cover ground state densities of other 
two-electron systems with fixed nuclei like the hydrogen molecule. An extension to 
excited states and to many-electron systems is probably difficult, since some informa- 
tion on nodal properties of bound state functions seems to be necessary. 

The asymptotic behaviour of the upper bound to p(x) appears to be satisfactory. Let 
us give an interpretation to make its physical content clear. An electron far from the 
nucleus 'sees' the screened nucleus and needs a promotion energy E to evade. This 
situation corresponds intuitively for very large r to 

which has been replaced by the rigorous differential inequality (3.12). 
That the proposed limiting behaviour 

(4.3) 

is also of numerical interest has been demonstrated by Carlton (1979). He showed, 
partly motivated by the conjecture (4.3) (Hoffmann-Ostenhof and Hoffmann-Ostenhof 
1977), that very accurately computed one-electron densitieFof helium-like atoms can 
be extremely well represented by a function p' = crm with m close to 2 ( 2 -  
1 ) / 4 2 ~ -  2 in a region approximately given by 5 c Zr  C 10 (au). We do not expect that 
our upper bounds will be very good in this region, but certainly some refinements of our 
methods are possible since F (x )  can be calculated to any desired accuracy, although we 
do not know how inequality (3.5) affects our estimates. 

Finally we remark that for the upper bound the restriction to the ground state 
density of two-electron atoms is not severe, but since there arise some new aspects for 
general many-electron systems we postpone a generalisation. 
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